How Hyperbaric Facility Upgrading Benefits Both Patients And Staff

By Janine Hughes


Some types of injuries or disease make it necessary to breathe a pure form of oxygen that is under additional atmospheric pressure. The process first came into use to help prevent deep-sea divers from experiencing painful decompression sickness due to rapid ascent, and today is in widespread use as a proven way to encourage more rapid healing of injuries and diseases. Hyperbaric facility upgrading provides advantages both for staff and patients.

During compression, people remain inside a uniquely designed chamber. Untreated air contains around 21% oxygen, and while beneficial, breathing pure oxygen has limited results in most cases. The best outcomes are generated by creating a pure form of this gas that is additionally under greater atmospheric pressure. It can statistically increase the volume of oxygen present in the blood.

This is important for a number of reasons. Blood vessels form and grow more rapidly, there is less deterioration of damaged tissue, stubborn wounds common in diabetics begin to heal, and the toxicity of certain poisons is reduced. Increasing the amount of oxygen within all body tissues decreases the chances of developing an obstruction due to gas bubbles, and speeds the recovery process. Treatments can be as few as two, or may be necessary daily.

The diseases and injuries that can benefit not only include decompression sickness, but today encompass infections of wounds sustained by diabetics, people who are crushed in accidents, those enduring life-threatening cases of gangrene, and patients with radiation damage from cancer treatments. Those suffering burns may benefit from quicker healing of skin grafts, and victims of carbon monoxide poisoning recover faster.

This type of facility is normally located within a hospital, and includes chambers ranging from individual sizes to those that can hold a dozen people. Monoplace facilities accommodate one person, are made of plastic, and are often shaped like tubes. An individual reclines inside while atop a table, and remains for two or more hours. Common side effects include ear-popping caused by air pressure changes.

A specific diagnosis determines how much pressure is applied and for how long, in addition to patient history regarding therapeutic oxygen. Some people are scheduled on a daily basis, while others may need far fewer treatments. In most instances the procedure is completely safe, but is not recommended for those who currently have upper respiratory issues or other conditions that may force treatment delays.

Operational reviews and inspections normally take place regularly. They are often completed by medical consultants. Standard operations are analyzed, and associated staff members are asked about operational or procedural issues that have occurred. Logs detailing maintenance and daily use help define which type of improvements may be needed, or whether outdated equipment should be replaced.

Upgrading to state-of-the-art equipment benefits both patients and staff. Not only does an improved facility provide better care, but is important for hospital administrators controlling the financial bottom line. Consultants can provide solid statistics that reveal cost savings compared to the amount needed to invest in improvements. Installation of improved equipment is coordinated to prevent any interruption in patient scheduling.




About the Author:



No comments :

Post a Comment