An audiometer is a machine used by ENT (ear, nose and throat) clinics and audiology centers to measure hearing loss. Audiometers are typically part of the equipment used during an audiometry test. There are both software and hardware-based audiometers available in the market.
The hardware version is a simple machine that produces pure tones at controlled intensities. During hearing loss evaluations, the machine's output is heard by the subject in one ear at a time through a pair of headphones. The subject has a feedback button that enables them to respond when they hear the tone.
The device can be a standalone machine or hooked up to a computer that controls the output and records all the feedback. These machines are made using different kinds of technologies, depending on the intended usage. Some are portable, others handhelds, and still others may be full-fledged systems that are meant to be used in one place. All of them are either bone-conduction or air-conduction audiometers.
The software-based device generates the same tone that is heard and responded to subjects in pretty much the same way. The only difference is that the tones in this case are prerecorded sounds stored in the computer. The audio output from the computer's sound card is sent to the headphones.
Audiometers built as a physical machine are more expensive, but provide the high degree of accuracy that hospitals, researchers and audiology centers need. Regular calibration is still essential to ensure the tone heard and the level shown in the display match each other. Proper calibration is also necessary to ensure a global standard for testing and measurement of hearing levels.
Audiometry software may be used as an alternative to a whole new machine. It will be cheaper and can be used by anyone at home and without assistance. However, calibration of the software is much more difficult and accuracy harder to obtain. People can still use it for regular testing, and only seek expert medical opinion if they discover any hearing loss.
The purpose of this arrangement, regardless of whether it is software or a physical device, is to pinpoint the exact audio level at which the subject stops responding. This allows the physician to diagnose the problem, if any, and provide treatment. Apart from actual ear cleaning to clear obstructions, the subject may also need to take ear drops. If the problem is more serious, a hearing-aid or surgery (or both) may be needed.
Audiometers may also be used for industrial audiometric testing. The procedure followed is essentially the same as described above. The difference is in the fact that the subject or patient doesn't come to the clinic. Instead, a full-fledged mobile audiometry testing lab and technician are brought to the industrial facility to test the hearing levels of noise-exposed workers.
The tests performed on industrial workers are not just for evaluating their personal hearing loss. The results allow the company to identify trends and add more noise-muffling technology if a lot of workers are showing signs of weakened hearing ability. It may also be required under group health plans. Either way, an audiometer used in an industrial environment must be calibrated to a high degree of precision, which means it must be accurate to within a few fractions of a decibel.
The hardware version is a simple machine that produces pure tones at controlled intensities. During hearing loss evaluations, the machine's output is heard by the subject in one ear at a time through a pair of headphones. The subject has a feedback button that enables them to respond when they hear the tone.
The device can be a standalone machine or hooked up to a computer that controls the output and records all the feedback. These machines are made using different kinds of technologies, depending on the intended usage. Some are portable, others handhelds, and still others may be full-fledged systems that are meant to be used in one place. All of them are either bone-conduction or air-conduction audiometers.
The software-based device generates the same tone that is heard and responded to subjects in pretty much the same way. The only difference is that the tones in this case are prerecorded sounds stored in the computer. The audio output from the computer's sound card is sent to the headphones.
Audiometers built as a physical machine are more expensive, but provide the high degree of accuracy that hospitals, researchers and audiology centers need. Regular calibration is still essential to ensure the tone heard and the level shown in the display match each other. Proper calibration is also necessary to ensure a global standard for testing and measurement of hearing levels.
Audiometry software may be used as an alternative to a whole new machine. It will be cheaper and can be used by anyone at home and without assistance. However, calibration of the software is much more difficult and accuracy harder to obtain. People can still use it for regular testing, and only seek expert medical opinion if they discover any hearing loss.
The purpose of this arrangement, regardless of whether it is software or a physical device, is to pinpoint the exact audio level at which the subject stops responding. This allows the physician to diagnose the problem, if any, and provide treatment. Apart from actual ear cleaning to clear obstructions, the subject may also need to take ear drops. If the problem is more serious, a hearing-aid or surgery (or both) may be needed.
Audiometers may also be used for industrial audiometric testing. The procedure followed is essentially the same as described above. The difference is in the fact that the subject or patient doesn't come to the clinic. Instead, a full-fledged mobile audiometry testing lab and technician are brought to the industrial facility to test the hearing levels of noise-exposed workers.
The tests performed on industrial workers are not just for evaluating their personal hearing loss. The results allow the company to identify trends and add more noise-muffling technology if a lot of workers are showing signs of weakened hearing ability. It may also be required under group health plans. Either way, an audiometer used in an industrial environment must be calibrated to a high degree of precision, which means it must be accurate to within a few fractions of a decibel.
About the Author:
When you need to find a reliable audiometer, visit the website here at www.henanmedical.com today. You can see details at http://www.henanmedical.com now.
No comments :
Post a Comment